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Design Concepts for Adaptive Airfoils
with Dynamic Transonic Flow Control
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Modi� cations to design of airfoils for use in unsteady transonic � ows are carried out by means of realistic
geometry modeling and systematic removal of recompression shocks in the transonic region. A procedure for
designing deformable airfoils for helicopter rotor blades is introduced. A baseline shock-free airfoil is created
by combining systematic and optimization methods. Two analytical models of deformation are considered. Their
ability to control dynamic stall is investigated numerically by using a two-dimensional, time-accurate, implicit
Navier–Stokes code. Results indicate the great potential for the controlled deformation of airfoils for helicopter
applications. Dynamic stalling of airfoils at high angles of attack and the appearance of strong recompression
shocks at low angles of attack and high Mach numbers are reduced signi� cantly. In this way, the results presented
will help in extending the design knowledge base for airfoils for helicopter rotors with advanced dynamic stall
control.

Nomenclature
a = speed of sound
an = coef� cients in parametrized-sections (PARSEC)

polynomial
c = chord length
cd = aerodynamicdrag coef� cient
cl = aerodynamic lift coef� cient
cm = aerodynamicmoment coef� cient
cp = pressure coef� cient, . p ¡ p1/=q1
f = frequency
M = Mach number, u=a
p = static pressure
q1 = dynamic pressure, .½1u2

1
/=2

Re = Reynolds number, .uc/=º

T = scaled dimensionless time, 0 · T · 1
u; v; w = local velocities in x; y, and z directions
X , Y , Z = Cartesian coordinates referred to c
® = angle of attack
º = kinematic viscosity
½ = density
!¤ = reduced frequency, .2¼ f c/=u1

Introduction

T HE idea of adapting the aerodynamic components of � ight
vehicles to improve aerodynamicperformance and control has

been the subjectof many studies, for example,Refs. 1 and 2. Propos-
als include systematic shape variationsof airfoils and lifting wings.
In recent years, practical concepts for deforming airfoils in the tran-
sonic speed range for varying operating conditions have gained re-
newed attention. New materials, re� ned control mechanisms, and
more stringent requirements to reduce fuel consumptionhave led to
severalconceptsfor ef� cientmodi� cationof � ow boundariesduring
� ight. Proposed systems make use of elastic, pneumatic, and piezo-
electric devices, and there is now a realistic chance that one of these
technologies will lead to improvements in commercial aircraft. To
achieve this, theoretical and numerical analysts are challenged to
re� ne their tools to model geometrical boundary conditions better
including mechanical constraints.3

Received 16 May 2002; revision received 21 January 2003; accepted for
publication30 January 2003.Copyright c° 2003by the American Instituteof
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0021-8669/03 $10.00 in
correspondence with the CCC.

¤Research Position, Institute of Aerodynamics and Flow Technology,
Department of High Speed Con� gurations, Bunsenstr. 10. Member AIAA.

Advanced numerical analysis is also required to model fully vis-
cous effects in compressible � ow. The latter is to be developed
especially for simulation of unsteady � ow phenomena in transonic
� ow because the periodic performance of helicopter rotor blades,
including the occurrence of dynamic stall, may be in� uenced most
favorably by adaptive devices. Because of the superposition of the
rotor’s rotational speed and the � ight speed of the helicopter, the
rotor blade section undergoes a variation in its freestream Mach
number of approximately 0:3 < M < 0:8. Nevertheless, transonic
� ow considerations are necessary because low Mach numbers oc-
cur at high angles of attack. This leads, in most cases, to a small
supersonic region very close to the leading edge. The recompres-
sion shock terminating this supersonicregion can be an initiator for
dynamic stalling of the airfoil and has, therefore,a strong in� uence
on the � ow characteristics.4

Improved aerodynamic performance has been obtained by com-
bining large camber modi� cations of a standard airfoil with local
contour � attening based on the transonic design knowledge base.5

In Ref. 6, an airfoil for a helicopter rotor was deformed by us-
ing a sealed slat. The size of the slat was limited to 10% of the
chord. The performance of the deforming airfoil was investigated
for varying freestream Mach numbers and varying angles of attack.
In Ref. 7, dynamic stall control is examined at constant freestream
Mach number for a pitching NACA 0012 airfoil with de� ection of
the leading-edgeregion of the airfoil. In the study, the effects of dif-
ferent frequencies for the de� ection are investigated numerically,
as well as the in� uence of the duration over which the deformation
is active. It is known,4;8;9 that adequate turbulence modeling and
appropriatemodels for transitionare of prime importance to predict
heavily separated� ows adequatelyat low and transonicMach num-
bers. Laminar/transitional leading-edge separation bubbles trigger
the dynamic separations in most cases. In Ref. 10, investigationsat
similar conditions to those presented here were done for different
turbulenceand transition models.

In this paper, different models for the variation of airfoil geom-
etry are explored. After selecting a proper design point, an initial
airfoil is generated. The role of systematic shock-free redesign is
investigated by applying the � ctitious gas (FG) design method11 to
the initial airfoil. Guided by these results, an optimization method
is used to design shock-free airfoils that also show improved aero-
dynamic characteristicsat weak offdesignconditions.These shock-
free airfoils are used as baseline airfoils for adapting models for
airfoil deformation. The performance of deforming airfoils is ana-
lyzed for oscillatory motion together with phase-shifted variations
in freestreamMach number. This is done with a view to application
in the � eld of helicopteraerodynamics.The � ow� eld responseto the
geometric variations is solved numerically by a two-dimensional,
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time-accurate,implicitNavier–Stokescode,12 whichwas updatedby
implementing the geometric conservationlaw (GCL) algorithm13 to
allow also for deforming grids. The code offers the most common
turbulenceand transition models. The aim of the present study is to
de� ne and apply dynamicallydeforming shapes to control dynamic
separation.In this regard, modeling transition in the boundary layer
would excessively increase computational time, and there is also
a lack of adequate models that could be used. For these reasons,
transition is not considered here.

Choosing a Design Point
Choosing the proper design point for an airfoil undergoing large

variations in angle of attack and freestream Mach number can be
a dif� cult task. One obvious choice is to select some kind of av-
erage � ow condition. This is probably the right choice especially
when the airfoil shape is kept unchanged. However, for the present
investigation,the designpoint is chosen to be the highestMach num-
ber/lowest angle of attack combination.The airfoil will be designed
using methods for generating shock-free airfoils at the design con-
ditions. To adapt the airfoil to low Mach numbers and high angles
of attack, the airfoil will be deformed according to the deformation
models described in the section “Models for Airfoil Deformation”.

Initial Airfoil Generation
A combination of a geometric preprocessing tool and a fast � ow

solver is used to generate an initial airfoil. The airfoil is de� ned by

Z D a1 X
1
2 C

6X
n D 2

an X n ¡ k (1)

which is a generalized representationof Sobieczky’s parametrized-
sections (PARSEC) airfoil family.3 Equation (1) will be applied
separately to the airfoil’s upper and lower surfaces. Both polyno-
mials are connected by the coef� cient a1 , which is determined by
the leading-edge radius of the airfoil and holds for both polynomi-
als. The coef� cients an are determined by geometric requirements
of the airfoil (location of the maximum thickness, curvature at the
maximum thickness,trailing edge information,etc.). The parameter
k in Eq. (1) is set to k D 0:5.

To calculate the � ow� eld around the generated airfoil, the � ow
solver MSES, by Drela and Giles14 and Drela15 is used. MSES is an
Euler code coupledwith a boundary-layercode.The combinationof
these two tools enables designers to create an initial airfoil based on
their aerodynamic knowledge base in an intuitive way. This initial
airfoil is shownin Figs. 1 (line a) and2 (line a) and the corresponding
distribution of the pressure coef� cient is shown in Fig. 3 (line a).
Figure 3 (line a) shows that a recompression shock terminates the
supersonic region on the upper side of the airfoil. This leads to the
next step in the design process.

Shock-Free Airfoil Redesign: Manual Relaxation
Systematic shock-free redesign is applied to remove the shock

at the design conditions. This is done using the FG-design method
combined with an inverse method of characteristics (IMOC)1 ap-
plied to the supersonic region of the � ow� eld (Fig. 1). The resulting
pressure distribution of the shock-free airfoil is shown in Fig. 3
(line b). When the FG-method is used, the real � ow� eld around the
airfoil is computed everywhere except in regions where the local
� ow velocity exceeds the critical speed. In potential theory for a
perfect gas, this supersonicregion would be modeled by hyperbolic
partialdifferentialequations(PDE). However, theFG method solves
an elliptic PDE everywhere in the � ow� eld. This leads to solutions
for the usual, perfect gas in regions where the � ow is subsonic and
a solution in the formally supersonicregion, but for a � ctitious sub-
sonic � ow. Because recompressionshocks are not possible in � ows
modeled by an elliptic PDE, a shock-free � ow (Fig. 1) is achieved.
The IMOC is used to determine the � ow characteristics for the per-
fect gas in the region bounded by the sonic line. This requires � ow
data at the sonic line as initial conditions for marching toward the
airfoil to � nd a new airfoil contourcompatiblewith the smooth sonic
line. The new shock-freeairfoil is obtainedafter taking into account

Fig. 1 Isobars and characteristics, subtracting contour difference
from the airfoil upper side.

Fig. 2 Initial airfoil and � nal baseline airfoil derived from optimiza-
tion method.

Fig. 3 Different analytical bump shapes with curvature control at
three points.

some corrections for the boundary-layer thickness. The pressure
distributionfor the new airfoil is given in Fig. 3 (line b). More thor-
ough descriptionsof the FG method and the IMOC may be found in
Refs. 16 and 17. Clustering of expansion characteristics, as can be
seen in Fig. 1 in the expansion region on the airfoil’s upper surface,
indicate strong gradients in curvature. In the limit, a series of char-
acteristics merge at one point. This is commonly referred to as the
Prandtl–Meyer expansionat a sharpbend.Such singularities,aswell
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Fig. 4 Pressure distributions for airfoils during different design steps
(MSES results).

as solution ambiguities due to overlapping characteristics, occur if
the aerodynamic load (design angle of attack and/or Mach num-
ber) is too high. Although well supportedby subsonic and � ctitious
� ow analysis, they indicate that no shock-free transonic solution is
physically possible. Shock-free design conditions strictly will oc-
cur only at design conditions.Therefore, it is practically feasible to
modify this design by a relaxation of surface parameters, as shown
in Fig. 1. The analyticallyfound surface modi� cation Fig. 1 (line b)
will be approximated by a bump function with an extended length
Fig. 1 (line c).

This bump function3 is given by a suitable expressionof the form

z D z2 ¢ sin[¼ f .» /]g.» / (2)

with z2 the maximum height of the bump. Figure 4 shows two dif-
ferentbump shapes.Curvature can be controlledat locationsP1, P2,
and P3. Local � atteningof the airfoil’s upper side by subtractionof a
bump accordingto Fig. 1 leads to the airfoil that was used in Ref. 10
as the “baseline rigid airfoil” to adapt the deformation models. In
Fig. 1 (line c), the airfoil contouron the upper surface is shown, and
Fig. 3 (line c) shows the correspondingpressure distribution.

Shock-Free Airfoil Redesign by Using
Optimization Methods

Becausemanual relaxationof the shock-freeairfoil leads to losses
in performance,as can be seen in Fig. 3, it is more ef� cient to use an
optimizationmethod. Therefore, the � ow solver15 is combinedwith
the SIMPLEX optimization method18 and a geometric preprocess-
ing tool to modify given airfoils. From the FG method, local bump
subtraction from the airfoil’s upper surface leads to a shock-freeor
at least to a nearly shock-free airfoil. When the bump function is
used [Eq. (2)], various parameters to control the shape of the bump
can be speci� ed. The beginningand end of the bump on the airfoil’s
upper surface are known from the FG method (Fig. 1). Based on ex-
periencein choosingbump parametersfor this type of application,in
most cases, only the maximum bump height z2 and its locationneed
to be determinedby the optimizationmethod.Curvaturesmoothness
at start- and endpoints of the bump is ensured.

The resulting airfoil, which was named A1510-03, is shown in
Fig. 2 (line d). It serves now as the baseline airfoil for the airfoil
deformation models. Its corresponding cp distribution is shown in
Fig. 3 (line d). The aerodynamic coef� cients for lift, drag, and mo-
ment derived from the MSES code, coupled with the optimization
method, are cl D 0:576, cd D 0:009, and cm D ¡0:0425.

Models for Airfoil Deformation
An exact de� nition of � ow boundary conditions by mathemati-

cally explicit functions has proven most bene� cial for the quality
of numerical simulations. This is especially true if the goal of the
analysis is to � nd shape modi� cations for improved aerodynamics.
In the present case, two possibilities for an airfoil deformation are
investigated.

Rotationof rigid airfoil front and/or rear parts around given hinge
points and their elastic connections, as shown in Fig. 5, is one way

Fig. 5 Airfoil modi� cation by modeling an SSF.

Fig. 6 Airfoil modi� cation by controlling the airfoil’s camber line.

Fig. 7 Structured grid around airfoil A1510-03.

to de� ne a deforming airfoil. Such a model of sealed slats and/or
� aps (SSF model) with smooth curvature connectionsmay be real-
ized mechanically. Being in a position to actually choose all of the
necessaryparametersrather freely to optimizeunsteady� ow quality
gives the designer the chance to not only ful� ll conditions that may
be set by (current) industrial relevance, but also to take these as a
startingpoint for � nding new speci� cations for new parameters and
de� ning their range regardless of the present status of mechanical
realization. This was the motivation for � nding an alternative way
to de� ne some effective parameters for creating airfoil deformation
speci� cation. As is well known from classical aerodynamic theory,
airfoils can be de� ned as being composed by a camber line and a
superimposed thickness distribution.Accordingly, an airfoil defor-
mation modelcan bede� ned by shapingthe camber line and keeping
the thickness distribution unchanged [Fig. 6, smooth camber varia-
tion model (SCV) model].What is needed in this case is information
about the camber line of the initial airfoil to be deformed.The SCV
model employs a smoother function for the camber line than does
the resulting local camber line shape of the SSF model in the hinge
point area if slat and � ap are rotated. A cubic function should, in
most practical cases, be suitable for modeling the airfoil’s initial
camber line.

Grid Generation
An ellipticgrid generationmethod19 was used to generatethe grid

around the airfoil (Fig. 7). The rigid-bodymotion and the deforma-
tion is performed in such a way that the outer � ow� eld boundary
is � xed in space. A 385£ 81 grid was found suitable. The smallest
grid element height is 2 £ 10¡6 times the chord of the airfoil.

Flow Solver
The � ow solver used for simulating the viscous � ow around the

pitching and deforming airfoil is based on the method by Beam and
Warming.20 Its capabilities to predict dynamic stall on airfoils was
validated using the well-accepted AGARD test cases.21 Detailed
informationabout the implementationand the accuracyof this code
may be found in Refs. 12 and 22. The code was used in previous
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work, for example,Refs. 5, 6, 10, 12, and 22. It was updatedwith the
GCL algorithm,13 to allow deforming grids. The grid is calculated
for each time step by a linear interpolation from a set of prede� ned
grids that include the deformation, as well as the pitching motion
of the airfoil. Because of an implemented vortex correction at the
outer boundary, it was found suf� cient to set the far � eld 11 chord
lengthsaway from the airfoil.12 The turbulencemodel by Spalart and
Allmaras23 is used throughoutthe followingcalculations.Transition
from laminar to turbulent� ow in the boundarylayerswas neglected,
for reasonsmentioned in the Introduction;thus, the whole boundary
layer was assumed to be turbulent.

Rigid-Body Motion
The reducedfrequencyof theairfoilmotion,!¤, was set to 0.1.For

a Reynolds number of 8 £ 106 at design Mach number of 0.73, this
results in an oscillatory frequency f of about 7 Hz. The sinusoidal
variationof theangleof attackandMachnumberare shown in Fig. 8.
The designpoint is de� ned at T D 0:75.Here ® reaches its minimum
valueof 2.2 deg, correspondingto the highestMach numberof 0.73.

First, the � ow� eldof thebaselinerigidairfoilis investigatedunder
pitching and superimposed lead/lag motion of the airfoil, as shown
in Fig. 8. To illustrate the � ow quality,plots of cp vs X are shown for
different times in the cycle in Fig. 9. The airfoil starts at the mean
angle of attack of 12.2 deg and a freestream Mach number of 0.5
at time T D 0. There are some high suction peaks because of strong
accelerationstarting from the stagnationpoint.Strong separationon
the airfoil’s suction surface occurs at T D 0:25 as the airfoil moves
toward the highest angle of attack and, correspondingly,the lowest
Mach number. The sheddingof the dynamic stall vortex can be seen
as waves are transportedtoward the trailing edge and, subsequently,
into the wake of the airfoil. The airfoil moves on its downstroke to-
ward its lowest angle of attack at T D 0:75, and the � ow reattaches

Fig. 8 Relation between angle of attack and Mach number.

Fig. 9 Pressure coef� cient for the baseline rigid-airfoil suction side.

approximately at T D 0:5. At the design point, T D 0:75, the distri-
bution of the pressurecoef� cient shows only a weak shock and only
slight differences from the distribution in Fig. 3 (line d), indicating
that the steady initial design still seems well suited for this reduced
frequency. From similar investigations,6;10 for this type of applica-
tion, at least in the region of T ¼ 0:75, a quasi-steady � ow can be
assumed at low reduced frequencies, that is, !¤ D 0:1 in this case.
At T > 0:75, the angle of attack is increased, and the freestream
Mach number decreases.This leads to an upward movement of the
compressionshock toward the leading edge.The solutionat T D 1:0
coincideswith theoneat T D 0:0 due to the periodicityof the bound-
ary conditions for angle of attack and freestream Mach number.

The solutionof a steady calculationat ® D 12:2 deg and M D 0:5
serves as a starting point for the unsteady calculations. The un-
steady calculation is taken to be converged when the solutions for
the aerodynamic coef� cients over multiple periods coincide. The
discretization in time was 200,000 time steps per period, which re-
sults in a Courant–Friedrichs–Lewy number of 270. This value lies
within the range for which stable solutions have been obtained for
similar investigations.8 One period takes approximately 2.6-h CPU
time on the DLR, German Aerospace Center, supercomputer NEC
SX5. It usually takes up to three periods for a converged solution to
be reached.

Airfoil Deformation
Airfoil deformation is done using the SSF and the SCV models

accordingto Figs. 5 and 6 with large elasticconnectionsand reduced
rigid portions of the contour for the SSF model. Figure 10 shows
all necessary parameters and their values. The starting and ending
points of the elastic parts of the airfoil are given in terms of a per-
centage of the chord length of the nondeformed airfoil. Locations
of hinge points are given by their (x , z) coordinates.To compare the
effectiveness of different deformation models, the same amount of
deformation for both models was ensured, as shown in Fig. 11. The
values for the de� ection of leading- and trailing-edge parts differ
because for the SSF model they refer to the baseline rigid airfoil but
for the SCV model they refer to the slope of the camber line of the
baseline rigid airfoil. The airfoil deformation is in phase with the
variation of ®. This means that the airfoil will be de� ected to the
maximum values at the highest angle of attack, as shown in Figs. 10
and 11. At the design point, no deformation results in the baseline
airfoil. To deform the airfoil, only the de� ection of leading- and
trailing-edgeparts for the SSF model is varied. For the SCV model
the slopes of the camber line at leading and trailing edge are varied
during the deformation.

Fig. 10 Maximum de� ection values of the deformation models.

Fig. 11 Deformed airfoils at maximum deformation (scaled).
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Fig. 12 Pressure coef� cient for the deforming SSF airfoil’s suction
side.

Fig. 13 Pressure coef� cient for the deforming SCV airfoil’s suction
side.

SSF Model
Deforming the baselineairfoil accordingto the SSF model shows

improvements of the � ow quality over most of the airfoil’s upper
surface. Note that the pressure distribution in Fig. 12 has a much
smoother appearance compared to the rigid airfoil. In the region
0 < T < 0:5, the shedding of the dynamic stall vortex is nearly sup-
pressed. A small vortex can be detected, and its appearance and
strength is governed by the degree of deformation. When a higher
degree of deformation is allowed, the tendencies toward separation
can be minimized. However, it was observed that stronger deforma-
tion resulted also in some decrease in lift. Therefore a tradeoff has
to be found between allowable vortex shedding and lift produced.
At the design point, T D 0:75, the pressure distribution is similar
to that for the rigid airfoil. Because of deformation of the airfoil at
T > 0:75 the shock moving toward the leading edge is weaker than
for the rigid-airfoil case.

SCV Model
When the SCV model is used for deforming the airfoil, the re-

sulting pressure distribution in Fig. 13 appears globally similar to

Fig. 14 Lift coef� cient vs ® for rigid airfoil, SSF, and SCV models.

Fig. 15 Drag coef� cient vs ® for rigid airfoil, SSF, and SCV models.

the results of the SSF model. In the region 0 < T < 0:5, a rather
weak dynamic stall vortex is shed from the airfoil’s upper surface
and spills into the wake. For T > 0:5, the recompression shock ap-
pears to be weaker for the SCV model than in the case of the SSF
model. At T ¼ 0:6, the SCV model results in a smoother pressure
distribution behind the shock.

The overallperformanceof the airfoil deformationmodels can be
assessedby plotting the aerodynamiccoef� cientscl , cd , and cm vs ®.
Both geometric models deliver clean curves for cl , cd , and cm coef-
� cients, with a maximum in cl at an angle of attack of about 19 deg.
This is about three times higher than the static value at the design
condition.Vortex shedding leads to a loss in cl near the maximum ®.
This results in the hysteresis loop, seen in Fig. 14. The SSF model
produces a slightly higher cl than the SCV model during the down-
stroke. The small loops at the highest angle of attack, indicating
dynamic vortex shedding,coincidewith the correspondingpressure
distributions in Figs. 12 and 13. The drag coef� cient is highest at
maximum ®, with a maximum value of less than 0.1 (Fig. 15). This
is about eight times smaller than for the rigid airfoil. The moment
coef� cient (Fig. 16) is nearly constant over the whole period with a
change in sign near the maximum ® for the SCV model. In the re-
gion 0:5 < T < 1:0, both deformation models result in very similar
values for the aerodynamic coef� cients.

For helicopterapplications,there is a demand for balancedlift for
the main rotorover thewhole period0 < T < 1. M2cl is proportional
to the lift force producedand is, therefore,plotted vs the dimension-
less time for three different airfoils in Fig. 17. The solid lines corre-
spond to the rigid baselineairfoilA1510-03and the dynamicallyde-
formedairfoil accordingto Fig. 10 using the SSF model. The dashed
line corresponds to the rigid baseline airfoil, which is statically de-
formed with the SSF model. The angles for leadingand trailingedge
de� ection are half the values shown in Fig. 10. The size and posi-
tion of the elastic parts are kept unchanged.The airfoil is deformed
initially and then kept rigid over the whole period 0 < T < 1. As
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Fig. 16 Moment coef� cient vs ® or rigid airfoil, SSF, and SCV models.

Fig. 17 Lift proportional factor M2cl vs the dimensionless time T.

expected, the baseline rigid airfoil shows some large separated re-
gions in the period 0:0 < T < 0:5. This is indicated by the oscilla-
tions in Fig. 17. In the transonic speed region, 0:5 < T < 1:0, some
lift overshoot is obtained. The SSF model shows the same global
behavior as the rigid baseline airfoil, but without the oscillations.
To achieve a globally balanced lift over the whole period, various
parameters can be changed. The range of the angle-of-attack vari-
ation, together with all of the parameters in the deformation model
can be used to balance the lift. One could reduce the design value
of cl , which is in this case 0.576. This would lead to a decrease
of M2cl in the transonic region 0:5 < T < 1:0. Increasing ® in the
region of 0:0 < T < 0:5 and adjusting the deformation model pa-
rameter would lead to the desiredgloballybalanced lift distribution.
At T ¼ 0:75, both the rigid baseline airfoil and the SSF model are
similar in shape and, therefore, produce nearly the same amount of
lift. The airfoil that is kept rigid with 50% degree of deformation
has some similarities to airfoils currently used in helicopters. With
the SSF model and some � xed, moderate degree of deformation,
such airfoils can be generatedon the basis of some suitablebaseline
airfoil.

Conclusions
Dynamic � ow control by adaptive, dynamically deforming air-

foils is presentedas a rational design procedure for the baselineair-
foil and accurate analytical de� nition of deformation models. The
effectiveness of deforming airfoils is tested under unsteady con-
ditions for angles of attack and freestream Mach numbers typical
of helicopter applications. If, from a mechanical point of view, the
use of dynamically deformed components is realistic for this type
of application, the presented studies suggest the following design
process.

When the design point of the initial rigid airfoil is chosen to be at
the highest Mach number and lowest angle of attack, the demands
on performance in the transonic speed regime can be ful� lled. An
optimization method is used to � nd the bump shape, which, when

subtractedfrom the airfoil’s upper side, producesa shock-freebase-
line airfoil. However, when it comes to the high-angle-of-attack
dynamic stall region, airfoil deformation models, such as the ones
presented, give an ability to control the � ow and achieve a balanced
lift distribution over the whole period.

Models with two different geometricalvariationswere tested nu-
merically for their effectiveness for dynamic � ow control. Both
models show great promise in de� ning � ow boundaries. It was
found that using quintic functions for modeling deformations with
SSF gives good results, especially during the upstroke, where the
drooped nose dramatically reduces � ow expansion and recompres-
sion shock strength. From a practical point of view, the SSF model
may � nd application to adaptive helicopter rotor blades. Modeling
airfoil deformation by the SCV model still needs a more careful
approach to � nd optimum parameters for the camber line varia-
tion. Low-speed applicationsfor the SCV model and suitable three-
dimensionalgeometry extensionscan be found by modeling animal
motions, for example, � apping bird wings and � sh bodies. Also the
SCV approach may be useful for controlling an airplane by chang-
ing the whole wing in a variable twist manner rather than by use of
ailerons.

Some uncertaintiesarise fromnumericaltransitionand turbulence
modeling.As pointedoutbymanyauthors,takingcareof the laminar
boundary layer plays an important role in predicting dynamic stall.
The lack of appropriatemodels still gives only limited possibilities
for exact prediction.
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